Answer:
Option C
Explanation:
Let $S_{1}$ be the circle with centre (2,3) and rradius a.
Let $S_{2}$ be the circle with centre (5,6) and radius a
Then $S_{1}=(x-2)^{2}+(y-3)^{2}-a^{2}=0$
and $S_{2}=(x-5)^{2}+(y-6)^{2}-a^{2}=0$
Now, radical axis of these circle is given by
$S_{1}-S_{2}$=0
$(x-2)^{2}+(y-3)^{2}-a^{2}-(x-5)^{2}-(y-6)^{2}+a^{2}=0$
$\Rightarrow$ $(4-4x+9-6y)-(25-10x)-(36-12y)=0$
$\Rightarrow$ $13-4x-6y-25+10x-36+12y=0$
$\Rightarrow$ $6x+6y-48=0$
$\Rightarrow$ $x+y= \frac{48}{6}=8$
$\Rightarrow$ $x+y=8$ ........(i)
Since, the given circle cut othogonally, therefore
$2g_{1}g_{2}+2f_{1}f_{2}=c_{1}+c_{2}$
$\Rightarrow$ $2(-2)(-5)+2(-3)(-6)=((-2)^{2}+(-3)^{2}-a^{2})+((-5)^{2}+(-6)^{2}-a^{2})$
$[\because radius=\sqrt{g^{2}+f^{2}+c}\therefore a^{2}=g^{2}+f^{2}-c \Rightarrow c=g^{2}+f^{2}-a^{2}]$
$\Rightarrow$ $20+36=(13-a^{2})+(61-a^{2})$
$\Rightarrow$ $56=74-2a^{2}$
$\Rightarrow$ $2a^{2}=74-56=18$
$\Rightarrow$ $a^{2}=9$
$\Rightarrow$ a=3 $[ \because$ radius can't be negative ]
Clearly, option (c) satisfy the Eq.(i).